If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+37n+42=0
a = 5; b = 37; c = +42;
Δ = b2-4ac
Δ = 372-4·5·42
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-23}{2*5}=\frac{-60}{10} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+23}{2*5}=\frac{-14}{10} =-1+2/5 $
| 4x-38=10 | | 11+x+2x-1=180 | | 10p/3=2 | | 4n+7=n2 | | 3x-32=2x+77 | | 5y+6=3y+2 | | -16x^2+38.4x-18=0 | | (12-x)+2=40 | | 3/15=6x/5 | | 26+8m=73 | | t=5=-3 | | 5(y+2)=26-3y | | 18-3y=5y+2 | | (16y-24)(1.2+0.4y)=0 | | 12x-(5x-8)=8+7x | | 20=20x5=100 | | 0.6^x=0.2 | | k+7/5=2k | | 3(2x+7=-6x-21 | | 2-4h-4=65h | | 24=4+4a | | 3(4y-5)=8y+17 | | 8k-4.53=2.15-2k | | 0.8x+0.64=0 | | (x-7)+(4x+3)=0 | | x3+17=-28 | | -b^2b=-2 | | 5^x+2=3125 | | -2x+5x+4x+8x=16 | | 5x-37=37 | | 3(2x-4)+5=17 | | 3(18.50-x)=104.50 |